石墨粉涂料的配方(讲解关于石墨烯涂料的一些小知识)
1 用钛酸酯偶联剂修饰水分散改性石墨烯
按通用方法将石墨制成氧化石墨烯,向氧化石墨烯分散液内分别加入钛酸酯和水合肼,在水浴加热法下发生反应,使氧化石墨烯还原并同时嫁接上钛酸酯偶联剂分子。将获得的合液进行后处理和真空干燥,得到粉末状改性石墨烯。
由于钛酸酯偶联剂对氧化石墨烯进行了表面修饰,不再产生团聚,故石墨烯水分散体稳定性高,可长时间贮存,适合用于复合材料及涂层材料的制备。制备工艺简便,生产效率高,生产过程和产品均能符合环保要求。
2 石墨烯与基体树脂共混复合水性涂料
2.1 水性导电涂料
石墨烯/聚酯树脂复合水性导电涂料。用Hummers法制备氧化石墨烯,经两步化学还原法得到有机分子修饰的石墨烯水溶液,加入聚酯、助剂和交联剂、催化剂,经液态共混,制备得到水性导电石墨烯涂料。该涂料具有高导电性能和力学性能,可应用于电磁屏蔽、抗静电、防腐、散热、耐磨及电子线路等领域,具有广泛的应用价值。
2.2 石墨烯改性水性环氧树脂耐磨玻璃涂料
石墨烯改性的耐磨水性玻璃涂料由两组分组成,第一组分为基体成膜物,第二组分为固化剂。其中第一组分包括改性环氧树脂20%~40%、助剂0.5%~7%、氧化石墨烯0.1%~5%、偶联剂1%~2%,其余为水(均为质量分数);第二组分是胺类固化剂。在使用前将两组分混合,其中第二组分占混合物质量分数的3%~30%。该涂料具有硬度高、耐磨性好、与玻璃基底亲和力与附着力强、耐水、耐乙醇性好,且符合环保要求。另外制备方法简便,具有重要的商业化应用价值。
2.3 石墨烯改性丙烯酸酯聚合物水泥防水涂料
用Hummers法制备的氧化石墨烯加入丙烯酸酯类聚合物乳液中,加入选用的助剂,按比例加入水泥,搅拌分散,制成氧化石墨烯改性的聚合物水泥防水涂料。该涂料显著增加了丙烯酸酯类聚合物乳液成膜的抗拉强度;提高了耐水性;此外,氧化石墨烯丰富的含氧官能团可以调节水泥水化产物晶体的生长,提高其抗拉强度和韧性。故氧化石墨烯改性的聚合物水泥防水涂料具有良好的耐久性、抗渗性以及物理力学性能,应用前景广阔。
2.4 石墨烯改性聚氨酯树脂复合水性涂料
2.4.1石墨烯/水性聚氨酯纳米复合乳液
将真空脱水的聚醚多元醇(N210)和TDI反应制得聚氨酯预聚体,加入二羟甲基丙酸引入亲水羧基,加三乙胺中和盐基化,加入氧化石墨烯水溶液、去离子水和乙二胺进行乳化反应,减压蒸馏出丙酮后,滴加维生素C溶液进行原位还原反应,得到石墨烯/水性聚氨酯纳米复合乳胶树脂。该乳胶树脂可应用于静电防护、防腐涂层、建筑涂料等领域,本发明工艺简便、环保、适合大规模生产。
2.4.2 石墨烯/TiO2复合材料改性水性聚氨酯抗菌涂料
纳米TiO2作为光催化纳米材料的一种,有抗菌灭菌作用,但它对于可见光吸收率较低,纳米粒子趋向于聚集,大大降低了其灭菌作用。在含纳米TiO2抗菌涂料中,引入5%以下的石墨烯,明显提高涂料对可见光吸收率,并加强纳米TiO2的光催化活性和抗菌、灭菌能力,使改性后的水性聚氨酯在抗菌灭菌综合性能方面有很大提高。并且具有良好的表面性能、耐水性和力学性能。
3 石墨烯/聚氨酯原位聚合的水性导电涂料
石墨烯相比传统的碳系导电填料(炭黑、石墨、碳纳米管、碳纤维等)具有更加优异的导电性及机械性能。
用二元胺对氧化石墨烯进行氨基化改性,后用化学还原恢复石墨烯的共轭导电体系,利用石墨烯表面的—NH与—NCO封端的水性聚氨酯原位聚合,制得含石墨烯的水性聚氨酯导电涂料。
该导电涂料具有防辐射、抗静电、防腐蚀、耐磨等特性,可用于高分子材料、金属材料、纺织材料表面等方面。
4 用溶胶-凝胶技术制备改性石墨烯/水性聚氨酯纳米复合涂料
中国科技大学XinWang等于2012年在《Surface&Coatings Technology》上发表了他们的研究论文:用溶胶-凝胶技术制备改性石墨烯/水性聚氨酯复合纳米涂料,分3部分:
(1)硅烷改性石墨烯纳米薄膜制备。用Hummers法制备氧化石墨烯(GO),然后对GO水分散体用水合肼化学还原成GNS,再用DCC(N,N'-二环己基碳化二亚胺)和3-氨基丙基三乙氧基硅烷(APTES)功能改性,用超声波分散1
h,在70 ℃下搅拌反应24 h,经后处理得到APTES功能改性的石墨烯纳米膜f-GNS。
(2)硅烷APTES封端的水性聚氨酯(WPU)制备。用异佛尔酮二异氰酸酯(IPDI)、聚氧化丙二醇、一缩二乙二醇和三羟甲基丙烷混合多元醇合成PU预聚物,再和二羟甲基丙酸反应,然后加APTES反应,得到APTES封端的水性聚氨酯(WPU),产率86.3%,数均分子量28 600(GPC测定)。
(3)溶胶-凝胶技术制备f-GNS/WPU纳米复合涂料。借助超声波将f-GNS粉末分散在去离子水中制成悬浮液,将APTES封端的WPU加入其中一起混合,用三乙胺调节pH值,制成f-GNS/WPU纳米复合涂料。
用1H-NMR、FTIR、XPS、GPC、AFM、HRTEM等表征了GO、f-GNS的结构,基本验证了图1所示的分子结构式与反应过程,及f-GNS/WPU纳米复合涂料产品结构和组成。纳米复合物中的T1、T2和T3代表了单、二和三取代的硅烷键合,证实在APTES封端的WPU和f-GNS相邻的硅氧烷分子之间缩聚反应,形成共价键。
近年来,基于石墨烯的防腐应用研究主要集中在纯石墨烯防腐涂层以及石墨烯复合防腐涂层。纯石墨烯涂层一般通过化学气相沉积(CVD)方法、机械转移法、喷雾法等方法,将纯石墨烯覆盖到铜、镍等金属基材表面,利用石墨烯自身二维片层结构层层叠加形成的致密隔绝层对金属进行防护。然而,单纯使用石墨烯防腐蚀涂层具有很多局限性:对石墨烯品质要求高,一旦薄膜有轻微的缺陷便会加剧金属腐蚀,只能提供短时间的抗氧化腐蚀效能;对金属基底可选择的不多,对设备要求高;难以大规模、大面积制备,难以产业化。
与纯石墨烯防腐涂料相比,石墨烯复合防腐涂料能够兼顾石墨烯优异的化学稳定性、快速导电性、突出的力学性能和聚合物树脂的强附着力、成膜性,可协同提高涂料的综合性能。另外,石墨烯复合防腐涂料的制备方法和涂覆工艺等都可建立在传统涂料生产的工艺基础上,在工业化合成和产业化应用中表现出很好的可控性和施工性。因此,石墨烯复合防腐涂料将是未来新型防腐蚀涂层材料的新生力量。
目前,石墨烯复合防腐涂料的研究主要以溶剂型复合材料为主,因含有大量的有毒重金属和挥发性有机物质(VOC),溶剂型防腐涂料的发展受到越来越多的限制。随着人们环保意识的不断提高,世界各国对防腐涂料的发展提出越来越多的要求,防腐涂料正向高性能化、功能化、绿色化的方向发展,特别是发展水性涂料已成为重防腐蚀涂料的重要发展方向。我国涂料行业“十二五”规划明确指出,将水性防腐涂料向重防腐领域推广,涂料行业“十三五”规划亦将大力发展高固体分和水性等环境友好型涂料作为重点研发项目。
1 石墨烯防腐机理
石墨烯本身具有的独特结构性质,使其在物理防腐和电化学防腐方面都展现出一定的优势。石墨烯的片层结构层层叠加、交错排列,在涂层中可形成“迷宫式”屏蔽结构,能够有效抑制腐蚀介质的浸润、渗透和扩散,提高涂层的物理阻隔性。同时,由于其小尺寸效应,石墨烯可以填充到涂层的缺陷当中,减少涂层孔隙率,增强涂层致密性,进一步延缓或阻止腐蚀因子浸入到基体表面。石墨烯层与层之间有良好的润滑作用,石墨烯的片层结构可以将涂层分割成许多小区间,能够有效地降低涂层内部应力,消耗断裂能量,进而提高涂层的柔韧性、抗冲击性和耐磨性。另外,石墨烯的共轭结构使其具有很高的电子迁移率,表现出良好的导电性,同时,其片层结构亦能够保证涂层间有较好的电化学接触,形成导电网络,提供更佳的电化学保护。
2 石墨烯在水性复合防腐涂料中的应用
水性涂料因低污染、易净化、无刺激等特点,成为涂料行业大力发展的绿色环保型涂料。目前全国各地正加快进行油改水的进程,但水性涂料的防护效果仍比不上其对应的溶剂型涂料,导致其在重防腐领域中的应用程度仍然不高。水性涂料存在一些技术性的问题:由于成膜机理的不同,与溶剂型涂料相比,水性防腐涂料难以形成组成高度均一、结构高度完整的高质量涂层,其成膜性、耐磨蚀性能不好;水性防腐涂料中残留的水性基团使其对水、氧气等腐蚀介质的屏蔽能力差;因水的表面张力大,水性涂层难以达到对颜填料的高度浸润和分散,因此改善水性涂料的防腐性已成为环保涂料发展中的重点。石墨烯具有的独特性能,为改善水性涂料的致密性、阻隔性、机械性能以及防腐性能带来新的改进途径。近年来,石墨烯的制备、功能化改性以及石墨烯聚合物纳米复合材料的研究进展显着,通过溶液或熔融共混、原位聚合等方法制备的溶剂型复合防腐涂料所展现出的效果亦被证实可行,这些为石墨烯水性复合防腐涂料的应用开发提供了研究依据,并带来了新的可能。
2.1 石墨烯水性聚氨酯防腐涂料
水性聚氨酯(WPU)具有溶剂型聚氨酯的性能,又克服了溶剂挥发对环境的污染。但是WPU 的热稳定性、耐溶剂性及力学性能等较差,影响其应用范围,因此为了提供WPU 的综合性能,通常要对其进行交联改性、环氧树脂改性、有机硅改性以及无机纳米材料(SiO2、TiO2、CNTs)改性等。石墨烯作为新的高性能纳米增强体,使聚氨酯的耐水性、热性能、力学性能均有不同程度的提升。Yoon 等利用共混法将异氰酸烯丙酯改性后的氧化石墨烯(iGO)与WPU进行复合,经考察,复合物的拉伸强度、玻璃化转变温度和热稳定性能都有显着提高。Yang 等将氧化石墨烯(GO)、还原型氧化石墨烯(RGO)以及功能化的石墨烯衍生物作为无机纳米填料添加到水性聚氨酯(PU)防腐涂料中,结合盐雾试验、电化学阻抗(EIS)表征手段,详细考察了石墨烯的表面化学状态、分散状态以及用量等因素对PU 复合涂层耐蚀性能的影响。结果表明,质量分数为0.2%的RGO对PU 复合涂层的耐腐蚀性能具有最优异的增强效果。Chen 等[13]发现在热塑性聚氨酯(TPU)中加入少量的磺化石墨烯后,复合材料的杨氏模量提高了120%。
从复合涂料的相容性和稳定性考虑,Li 等用钛酸酯偶联剂来功能化石墨烯,使其在水性聚氨酯中均匀分散。Wang 等采用溶胶-凝胶法将硅烷功能化的石墨烯与WPU 复合,结果发现添加2.0%的石墨烯可使涂层的杨氏模量提高86%,抗张强度提高71%。
丁建宁等利用氨丙基三乙氧基硅烷(KH550)对GO 表面功能化修饰,提高了GO 在丙酮、DMF 有机溶剂中的分散性,并利用GO 上的-NH2 基团与WPU聚合物单体间的化学反应,通过原位聚合法制备了GO/WPU 复合材料,改善了GO 在WPU 基体中的相容性。李友良等通过原位聚合法,在制备水性聚氨酯的加水乳化反应过程中加入氧化石墨烯溶液、去离子水和乙二胺,再加入维生素C 进行原位还原,最后制得石墨烯/水性聚氨酯纳米复合材料。朱科等通过逐步聚合反应将异氰酸酯功能化石墨烯(IGN)接枝到水性聚氨酯(WPU)链段中,制备得到水性异氰酸酯改性石墨烯/聚氨酯纳米复合乳液( IGN/WPU),并将其应用到金属防腐涂层领域。结果表明,随IGN 含量的增加,涂层硬度提高,水蒸气透过率下降,防腐效率增大。
2.2 石墨烯水性环氧防腐涂料
经过研发工作者们多年的努力,水性环氧涂料已经克服了耐水性/耐蚀性差的缺点,逐步应用到溶剂型涂料所涉及的重防腐领域。为进一步提高其防腐性能,研究人员将石墨烯复合到水性环氧涂料中开发出新型复合涂层。
王玉琼等用聚丙烯酸钠将石墨烯浆料均匀稳定地分散到水溶液中,再经物理混合得到石墨烯水性环氧树脂涂层,通过极化曲线、交流阻抗谱和中性盐雾试验探讨了涂层的耐蚀性能。
结果表明添加石墨烯后,复合涂层表现出较好的隔水性能,水分子在涂层中的扩散速率明显减缓;同时,涂层的防腐效果明显提高,电化学测试结果显示,添加了石墨烯的复合涂层的自腐蚀电流密度明显减小,涂层电阻和电荷转移电阻增大。
张兰河等利用原位聚合-化学还原法将苯胺插层聚合到石墨烯的表面和片层间,制备出聚苯胺/石墨烯复合材料,并采用机械共混法获得聚苯胺/石墨烯-水性环氧树脂复合防腐涂料。
研究结果发现,与聚苯胺相比,掺杂了石墨烯的聚苯胺复合材料具有更高的比表面积,且保持了石墨烯原有的片层状结构;所制备的复合涂层表现出的抗渗性、耐蚀性和防腐性,均优于聚苯胺和纯环氧树脂的防护性能。
为使石墨烯复合涂料的分散性和稳定性更好,Zhang 等在氧化石墨烯GO 还原过程中加入聚乙烯吡咯烷酮PVP,借助于两者间的非共价键π-π 相互作用得到高稳定性的PVP-rGO 分散液, 利用原位合成法将PVP-rGO 与水性环氧树脂复合制备石墨烯-环氧涂层,并详细考察了不同石墨烯添加量对复合涂层防护性能的影响。与纯环氧涂层相比,添加了PVP-rGO的石墨烯-环氧涂层的热分解温度、杨氏模量、防腐蚀性能均有显着提高,且石墨烯用量存在最优值。余海斌等利用苯胺低聚物衍生物与石墨烯之间形成π-π 键,使得石墨烯在水中的溶解度大于1 mg/mL,导电率~1.5 S/cm。高延敏等利用GO 表面含氧官能团与氨基硅烷偶联剂中氨基的反应,制备了氨基硅烷偶联剂功能化修饰的GO,大大提高了GO 的疏水性和其与环氧树脂的亲和力,提高了水性环氧防腐涂料的耐磨性和耐腐蚀性能。
2.3 石墨烯水性丙烯酸防腐涂料
水性丙烯酸防腐涂料价格低廉,具有安全环保、耐老化性优异、耐碱性佳、合成加工简单等特点,但因亲水性基团的残留,其耐水性较差,易闪蚀。蓝席建等人将石墨烯用于水性丙烯酸树脂的防腐涂料中,通过配用相应的分散剂或偶联剂,改善了石墨烯在涂料中的分散性,并进一步通过搅拌、砂磨、过滤等工艺,实现水性石墨烯涂料的制备。结果表明,水性石墨烯涂料具有突出的耐水性和耐盐雾性,其防腐效果明显优于其他碳系材料填充的水性涂料。吕生华等人利用溶液共混法制备氧化石墨烯/丙烯酸酯/水泥复合涂料,研究发现GO 表面的含氧基团可有效调控水泥水化产物的生长,使复合涂层的抗渗透性、拉伸强度和断裂伸长率等性能得到明显提升,而且涂层对环境友好、无污染。
2.4 石墨烯水性无机富锌
水性无机富锌底漆是以硅酸盐溶液为重要成膜物质,以高含量的锌粉(为提高涂膜性能,可适量掺混些片状铝粉、绢云母粉、磷铁粉、磷铁锌硅粉等)等为防腐颜料的水性重防腐底漆。由于富锌含量高,锌粉在空气中易发白,减少了涂层的附着力,涂层在使用过程中易起泡和干裂,防腐性能降低。袁高兵等将石墨烯作为防腐助剂加入到水性无机富锌涂料硅酸盐液体体系中,结果表明不含石墨烯防腐助剂的涂膜板耐盐雾试验1500 h 后就开始出现点绣、气泡等异常变化,而含有微量石墨烯防腐助剂的涂膜板耐盐雾实验2000 h 后仍无任何变化,表明添加石墨烯提高了涂膜的耐盐雾性能。
国内外腐蚀防护工作者在石墨烯水性复合防腐涂料性能研究方面做了大量工作,石墨烯水性复合防腐涂料所展现出的效果,说明水性涂料经石墨烯改性后,性能有所提高。然而,多数研究都是实验室成果,研究内容碎片化,且研究重点集中在如何制备石墨烯复合防护涂层以及验证石墨烯的防腐性能,忽略了对石墨烯选材、石墨烯水性复合涂料的配套体系的研究,特别是对石墨烯对水性涂层防腐性能间的构效关系以及石墨烯与涂层的分散、界面问题等认识不足。
3 石墨烯在水性防腐领域中的应用难点
3.1 解决石墨烯的选材及与水性涂料的配套问题
石墨烯的制备方法不同,其物理结构、化学性质也不尽相同。如图1 所示,氧化石墨烯GO、还原氧化石墨烯RGO 的结构虽与石墨烯GNP 类似,但由于化学修饰的影响,其表面存在大量的结构缺陷,造成其导电、机械、力学等性能均没有GNP 的优异。
本文由沃克装修资讯网发布,不代表沃克装修资讯网立场,转载联系作者并注明出处:https://www.zxiu100.com/a/710.html